golconda.decomposer module

class golconda.decomposer.WaveletDecomposer(num_scales: int = 3)[source]

Bases: object

Methods

decompose(input_map[, num_scales, ...])

Perform wavelet decomposition based on the chosen filter type for the given image.

decompose_with_starlet()

Perform wavelet decomposition using the starlet transform.

decompose_with_tophat()

Perform wavelet decomposition using the top-hat filter.

get_th_smooth_map(map, window_radius)

Retrieve or compute the top-hat filter in Fourier space for a given radius.

get_top_hat_filter(window_radius)

Retrieve or compute the top-hat filter in Fourier space for a given radius.

reconstruct(coefficients)

Reconstruct image from wavelet coefficients by summing all scales.

set_image(input_map)

Set the input image and compute its Fourier transform.

set_size_dependent_params(image_shape[, L])

Initialize size-dependent parameters (frequency grids, pixel size, etc.) based on the image shape.

top_hat_window_fourier(k)

Compute the top-hat window function in Fourier space.

decompose(input_map: ndarray, num_scales=1, filter_type: str = 'tophat', recalculate_params: bool = True)[source]

Perform wavelet decomposition based on the chosen filter type for the given image.

decompose_with_starlet() ndarray[source]

Perform wavelet decomposition using the starlet transform.

decompose_with_tophat() ndarray[source]

Perform wavelet decomposition using the top-hat filter.

get_th_smooth_map(map, window_radius: float)[source]

Retrieve or compute the top-hat filter in Fourier space for a given radius.

get_top_hat_filter(window_radius: float) ndarray[source]

Retrieve or compute the top-hat filter in Fourier space for a given radius.

reconstruct(coefficients: List[ndarray]) ndarray[source]

Reconstruct image from wavelet coefficients by summing all scales.

Parameters:

coefficients – List of coefficient arrays from decompose()

Returns:

Reconstructed image array

set_image(input_map: ndarray) None[source]

Set the input image and compute its Fourier transform.

set_size_dependent_params(image_shape, L=None)[source]

Initialize size-dependent parameters (frequency grids, pixel size, etc.) based on the image shape.

static top_hat_window_fourier(k)[source]

Compute the top-hat window function in Fourier space.